
Start

Declare:

Node* head //this pointer points to the first node in the list

Srand(time(NULL) //for random number generation

Print instructions

Accepts a user inputted
choice for the functionality

that they wish to use

Did user choose
choice 1?

Did user choose
choice 2?

No

Did user choose
choice 3?

Did user choose
choice 4?

Did user choose
choice 5?

Did user choose
choice 6?

No

No

No

No

To Page 2

No

Run the delete
passenger subroutine

Run the update
passenger information

subroutine

Run the search for a
passenger subroutine

Run the print passenger
list subroutine

Run the Manual
passenger add

subroutine

Run the Automatic
passenger generation

subroutine
Yes

Yes

Yes

Yes

Yes

Yes A

A

A

A

A

A

A

Notes:

 We use two classes in this program. One class, called
Node, holds all of the passenger’s information and
contains no functions. The passenger’s information
contained in a node is as follows: first name, last name,
passengerID, reservation number, telephone number,
seat number, meal preference, a pointer that points to
the next node in the list, and a bool variable that
indicates whether or not the passenger is checked in)
The other class, called Reservation, forms multiple
Nodes into a list. As mentioned above, each node
contains a Node pointer variable called next that will
point to the next node in the list. The reservation class
also contains all of the functions that can manipulate the
list.

 all the functions only used for a single functionality are
included in that functionalities section. The functions
that are common to multiple functionalities are included
in the common subroutines section.

 Also, not all functions are shown as separate
subroutines. Some functions (like print instructions and
main menu, or clear buffer) were not shown separately
for clarity.

 The Print_Passenger_List() function is functionality
number 3, but is also used in other functionalities. For
clarity, it is included in the functionality 3 section

Print the main menu

Did user choose
choice 7?

Did user choose
choice 8?

Did user choose
choice 9?

Did user choose
choice 0?

From
Page 1

No

No

No

Did user choose
choice ‘x’ or ‘X’?

No

A

No

EndYes

Run the Sort subroutineYes

Run the print check in
report subroutine

Run the Print menu
report Subroutine

Run the Check in
passenger subroutineYes

Yes

Yes

A

A

A

A

Refers to the function CreateNewNode()
Will add a node to the begginning of the list

Create New Node

Start

Parameters:

 str nameFirst //holds value for passenger’s first name
Str nameLast //holds value for passenger’s last name
Int PassengerID //holds passenger’s generated passenger ID
Int ReservationNum //holds passenger’s generated reservation number
Int telephoneNUm //holds the passenger’s telephone number
Int seatNum //holds the passenger’s unique seat number
Str mealType //holds the passenger’s meal choice

Create a new
passenger Node

Set the new node values
to be equal to the
parameter values

Set the Checked in
indicator to false

Initialize the next
pointer to false

Run the insert
node

subproccess

End

Only used when the create new node subroutine is called

Start

Insert Node
Refers to the insertNode() function

Only used when the create new node subroutine is called

Is the size of the plane less than
or equal to the size of the list?

Parameters:

Node* newEntry //holds the node that will be added to the list

Output plane full
error messageYes

Is the list empty?

No

Set the new entry’s next pointer to
point to the first node in the list.

No

Set the pointer variable head
to equal the new entry (i.e.
make the new node the first

node in the list).

Yes

End

Start

Autofill List numbers
Refers to the Autofill_List_Numbers() function

This function will generate a number that has
not been used in the list before for the
reservation number, passengerID, or
telephone number based on the value of the
key parameter.

Parameters:

Int key //the function whether to autofill the passenger id,
the reservation id, or the telephone number
based on this parameter

Declarations:

int newRandomValue; // This will be used to inspect the rand() value is unique
bool uniqueFound; // Will be used in cooperation with the loops. Stores value outputted by search subroutine
Node* temp = head; // The list that we will be searching
Node* nullityNode = NULL; // A temporary list that wont be used, but required for the search() function.

Does key = 0?

No

For the passenger ID Generate a random value and
place it into newRandomValue

Run Search for a node with the same
value as newRandomValue in the

passengerID field

Was another passenger node with
the same value as newRandomValue

found?

Yes

Yes

Does key = 1?

No

For Reservation Number Generate a random value and
place it into newRandomValue

Run Search for a node with the same
value as newRandomValue in the

Reservation Number field

Was another passenger node with
the same value as newRandomValue

found?

Yes

Yes

End

No

No

Does key = 2?For Telephone Number Generate a random value and
place it into newRandomValue

Run Search for a node with the same
value as newRandomValue in the

Telephone Number field

Was another passenger node with
the same value as newRandomValue

found?

Yes

Yes

No

No

Output the
newRandomValue

Output the
newRandomValue

Output the
newRandomValue

Output error
code (-255) A

A

A

A

Get Seat Available

Refers to the GetSeatAvailable() function

This subroutine either determines if an
inputted key is already used as a seat
number or not, or produces a random
unused seat number depending on
whether a key is passed to it or not

Start

Parameters:

Int requestKey //this parameter contains an int value that the entire list will
 be checked against to ensure it has not been used as a seat
 number. If this parameter is not entered, the subroutine
 produces a random unused seat number

Declarations:

int newRandomValue // This will be used to inspect the rand() value is unique
bool uniqueFound // Will be used in cooperation with the loops. Stores the result generated by search

 //that says whether or not a node with the given value was found or not.
Node* temp = head // The list that we will be searching
Node* nullityNode = NULL; // A temporary list that wont be used, but required for the search() function.

Was a requestkey given to the
subroutine to be checked for

uniqueness?

Run search for a node with the same
seat number as the given key

Was a node with the
same seat number as

the key found?

Output an error
code (-255)Yes Yes

Output the
requestkey

No

Generate a random value and
place it into newRandomValue

Run Search for a node with the same
value as newRandomValue in the seat

number field

Was another passenger node with the
same value as newRandomValue found?Yes

No

Output the
newRandomValue

No

End

User Input Number
Refers to the UserInput_Number() function
This function was shown because it contains some
Error checking that ensures an integer value is entered.

This function is used to process a user inputted integer

Start

Parameters:

Bool UsePrompt //simply decides whether or not
 //a prompt is generated for the
 //user.

Declarations:

Int userInput //holds the user’s inputted value

Is UsePrompt
true?

Accept user
input

Display PromptYes

No

Is input an
integer?

Clear input buffer

Output User
Inputted value

Clear input buffer
and display error

message
No

Yes

End

Search
Refers to the Search() function

 This function searches a linked list that it is given
for a specified key. Depending on a the
parameters entered, it will search different fields
of the passenger nodes.

 It can search the first name field, the last name
field, the passenger ID field, the reservation
number field, the telephone number field, or the
seat number field.

 It returns a value of true if the key was found and
a value of false if it was not.

 it also updates two node pointers (pre and cur)
that it is given. These pointers will be pointed to
the node with the found key and the node before
the node with the found key. (used for delete
function)

Start

Parameters:

Node** cur //This parameter points to the node where the search will start from.
 //It will be changed to point to the node that contains the key if the key

 //was found. It will point to the last node in the list if the key was not
 //found

Node** pre //this will be made to point to the node before the node that the key was
 //found in.

int searchMode //this determines what field will be searched for the key

std::string searchKeyString = "NA" //this holds the string value that will be searched
 //for. It will be left blank if a field with a string type
 //value is not being searched

int searchKeyInt = -255 //this holds the int value that will be searched for. It will be
 //left blank if a field with an int type value is not being
 //searched

Is the list given to the
subroutine empty? Output falseYes

Does the searchMode
parameter equal 0?

Does the last name field in the
node pointed to by cur equal the

searchKeyString parameter?
Output True

A

Yes

No

Yes C

C

Does the searchMode
parameter equal 1?

Does the first name field in the
node pointed to by cur equal the

searchKeyString parameter?
Output True

A

Yes

No

Yes C

No

Does the searchMode
parameter equal 2?

Does the passenger ID field in the
node pointed to by cur equal the

searchKeyInt parameter?
Output True

A

Yes

No

Yes C

No

To Page 2

No

No

Does cur point
to NULL? No

B

Yes

Output False

End

C

From
Page 1

Does the searchMode
parameter equal 3?

Does the reservation number field
in the node pointed to by cur equal

the searchKeyInt parameter?
Output True

A

Yes

No

Yes C

Does the searchMode
parameter equal 4?

Does the telephone number field in
the node pointed to by cur equal

the searchKeyInt parameter?
Output True

A

Yes

No

Yes C

Does the searchMode
parameter equal 5?

Does the seat number field in the
node pointed to by cur equal the

searchKeyInt parameter?
Output True

A

Yes

No

Yes

No

Point the pre pointer parameter to the node
that the cur pointer parameter points to

Point the cur pointer parameter to
the node pointed to by cur->next

B

A

C

Automatic Passenger Generation
Refers to the Autofill_List() function

This function generates a hard coded list of 20
passengers with largely randomized information

Will simply generate the passengers into the linked
list with the Create New Node subroutine and
return the user to the main menu.

The hard coded values are shown in our code

Start

Declarations:

Int i = 0 //counter
for the loop shown
below

Is i less than 20?

Run Create New Node Subroutine with
the newly generated values to enter the

new node into the list

Generate the hard coded values
for the first and last name. (These

will change depending on the
value of i)

Run the autofill list numbers
subroutine to generate a unique

passenger ID

Run the autofill list numbers
subroutine to generate a unique

reservation number

Run the autofill list numbers
subroutine to generate a unique

telephone number

Run the get seat available subroutine to
generate an unused seat number

Run the autofill list meal choice subroutine
to generate a random meal choice

Yes

Increment i by one

End

No

Autofill List Meal Choices
Refers to the Autofill_List_MealChoices() function

This subroutine is only called in the autofill list
subroutine shown above

This subroutine just chooses a random meal choice
for a passenger to have

Outputs the meal choice as a string

Start

Declarations:

Int choice // this variable will hold a random value
//that will decide which meal choice is chosen

Insert random
number between 1
and 4 into choice

Is choice equal
to 1?

Is choice equal
to 2?

Is choice equal
to 3?

No

No

Output
choice 1

Output
choice 2

Output
choice 3

Output
choice 4

End

Yes

Yes

Yes

No

Manual Passenger Add

Refers to the ManualCustomerAdd() Function

This functionality will allow the user to
manually add a customer to the beginning of
the list.

Start

Declarations:

std::string stdinNameFirst; //holds the user inputted first name value
std::string stdinNameLast; //holds the user inputted last name value
int stdinPhone; //holds the user inputted telephone number value
std::string stdinMealChoice; //holds the user inputted meal choice value
int stdinSeat; //holds the autogenerated or user inputted seat number value
int seatCheck; // Used for inspecting if seat is available
bool seatConfirmed; // Used for confirming if the seat is available.

Accept User inputted string
for the first name field

Accept User inputted string
for the last name field

Run the User Input Number
subroutine to input a valid integer

for the phone number field

Run the manual passenger add meal
choice subroutine to generate a value for

the meal choice field

Ask the user if they
wish to manually

choose a seat number

Did they answer
Yes?

Run the get seat available subroutine
to generate a random available seat

number

Run the User Input Number
subroutine to input a valid integer

for the seat number field

No

Yes

Run the get seat available subroutine to
determine if the user inputted number is

a valid unused seat number

Was the user inputted number
determined to be a valid unused seat

number?

Output an error
messageNo

Run the autofill list numbers
subroutine to generate a unique

passenger ID

Run the autofill list numbers
subroutine to generate a unique

reservation number

Run Create New Node Subroutine with
the newly generated values to enter the

new node into the list

End

A

A

Yes

A

Manual Passenger Add Meal Choice
Refers to the ManualCustomerAdd_MealChoice Function

This Subroutine chooses a meal choice from a finite list
based on user input

It outputs the meal choice as a string

It is only used in the Manual Customer Add subroutine

Start

Declarations:

Int userChoice //this variable holds the users inputted choice for
 //which meal choice to choose

Output menu for
user to choose from

Run the User Input Number
subroutine to accept a valid integer

for choosing a meal choice

Is user input
equal to 1?

Output meal
choice 1Yes

Is user input
equal to 2?

Output meal
choice 2Yes

Is user input
equal to 3?

Output meal
choice 3Yes

Is user input
equal to 4?

Output meal
choice 4Yes

Is user input
equal to 5?

Output meal
choice 5Yes

No

No

No

No

No

End

Print Passenger List
Refers to the Print_Passenger_List() Function

This functionality will simply print the entire current passenger
list from beginning to end.

This particular subroutine is also used in the search for a
passenger functionality as well

It outputs either a single passenger node’s information or the
information for the entire list of passenger nodes depending on
the bool parameter’s value

Start

Parameters:

Node* listIndex //if it is desired to print the entire list, this
 //parameter will point to the head of the list, if
 //it is desired to print a single node, this
 //parameter will point to that node

bool runOnce = false //this parameter should only be included if
//it is desired to print only print the
//information from a single node. It will
//default to false which will make the
//entire list print

Is the list empty?Output an
error message Yes

Declarations:

Node* temp //this pointer will contain the value of head for
 //printing the entire list and will contain the value
 //of the node to be printed for only printing a
 //single node

int indexCounter = 1 // this variable is used to ensure only one
node is printed when it is desired to only print one node.

End

Is temp NULL?

Is runOnce set to
true?Is indexCounter < 2?

Print the
current

node’s data

No

Yes

Yes

No

No

Set temp to point to
the next node in the

list.

Increment the
indexCounter

variable by one

Yes

No

Search for a Passenger
Refers to the FindPrintPassenger() function

This functionality will search for a passenger based on a user
chosen information field and output that passenger’s information.
If a passenger with the inputted information is not found, the
functionality will output an error message and return the user to
the main menu

It can search on the Passenger’s: last name, telephone number,
reservation number, passenger ID, or seat number.

This functionality uses the print passenger list subroutine from the
print passenger list functionality to print the found passenger’s
information

Start

std::string captureString; //used to hold a user inputted string
 //for searching the last name field

int captureInt; //Used to hold a user inputted integer for
 // searching everything else

Node* nodeIndex = head; //points to the beginning of the list
 //to be searched so the search can
 //cover the entire list

Node* nullityNode = NULL; //used to fufill the search
 //function’s parameter
 //requirements

Run the User Input Number
subroutine to accept a valid integer

for choosing a search option

Does the user’s
input equal 1?

Accept a user
inputted string

Run the search subroutine to search for a node with the same
value as the user’s inputted string in the Last Name fieldYes

Does the user’s input match the
last name field of a passenger

node in the list?

Run the Print Passenger List subroutine
to print that passenger’s information Yes

Print an error
message

No

B

Does the user’s
input equal 2?

Run the search subroutine to search for a
node with the same value as the user’s

inputted number in the telephone
number field

Yes

Does the user’s input match the
telephone number field of a
passenger node in the list?

Run the Print Passenger List subroutine
to print that passenger’s information Yes

Print an error
message

No

B

No

Run the User Input Number
subroutine to input a valid integer

for the phone number field

To Page 2

No

Output a menu for the user to search from

A Print an error
message

From
Page 1

Does the user’s
input equal 3?

Run the search subroutine to search for a
node with the same value as the user’s

inputted number in the reservation
number field

Yes

Does the user’s input match the
reservation number field of a

passenger node in the list?

Run the Print Passenger List subroutine
to print that passenger’s information Yes

Print an error
message

No

B

Run the User Input Number
subroutine to input a valid integer
for the reservation number field

Does the user’s
input equal 4?

Run the search subroutine to search for a
node with the same value as the user’s
inputted number in the passenger ID

field

Yes

Does the user’s input match the
passenger ID field of a

passenger node in the list?

Run the Print Passenger List subroutine
to print that passenger’s information Yes

Print an error
message

No

B

Run the User Input Number
subroutine to input a valid integer

for the passenger ID field

No

Does the user’s
input equal 5?

Run the search subroutine to search for a
node with the same value as the user’s

inputted number in the seat number field
Yes

Does the user’s input match the
seat number field of a passenger

node in the list?

Run the Print Passenger List subroutine
to print that passenger’s information Yes

Print an error
message

No

B

Run the User Input Number
subroutine to input a valid integer

for the seat number field

No

Does the user’s
input equal 0?

Yes

No

A No

EndB

Update Passenger Information
Refers to the UpdatePassengerInformation() function

This functionality will allow the user to update a
passenger’s information.

It will first allow the user to search for a passenger
based on a chosen field. Then, it will allow the user to
update that passenger’s information.

It can search based on the Last name, reservation
number, telephone, passenger ID, and seat number
fields.

It can update the telephone number, passenger ID,
reservation number, and seat number fields

Start

Declarations:

std::string captureString; //holds the user’s input for a string value

int captureInt; //holds the user’s input for an int value

Node* nullityNode = NULL; // Create a list placeholder; we will not need it in
//this function, but it is required when calling the
//Search() function.

bool targetFound = false; // We will use this to determine if the passenger
//was detected during the search. This will
//become true IIF the passenger was found,
//otherwise - its false. IIF this is true, then we will
//allow the user to update that node index.

Node* temp = head; //used so the head pointer is not wrongly updated

Print a menu for the user to search from

Run the User Input Number
subroutine to accept a valid integer

for choosing a search option

Does the user’s
input equal 1?

Accept a user
inputted string

Run the search subroutine to search for a node with the same
value as the user’s inputted string in the Last Name fieldYes

Does the user’s input match the
last name field of a passenger

node in the list?
Yes

Print an error
message

No

B

Does the user’s
input equal 2?

Run the search subroutine to search for a
node with the same value as the user’s

inputted number in the telephone
number field

Yes

Does the user’s input match the
telephone number field of a
passenger node in the list?

Yes

Print an error
message NoB

No

Run the User Input Number
subroutine to input a valid integer

for the phone number field

To Page 2

No

A Print an error
message

Set target found to
true

Set target found to
true

C

C

// Create a list placeholder; we will not need it in
//this function, but it is required when calling the

its false. IIF this is true, then we will

From
Page 1

Does the user’s
input equal 3?

Run the search subroutine to search for a
node with the same value as the user’s

inputted number in the reservation
number field

Yes

Does the user’s input match the
reservation number field of a

passenger node in the list?
Yes

Print an error
message

No

B

Run the User Input Number
subroutine to input a valid integer
for the reservation number field

Does the user’s
input equal 4?

Run the search subroutine to search for a
node with the same value as the user’s
inputted number in the passenger ID

field

Yes

Does the user’s input match the
passenger ID field of a

passenger node in the list?
Yes

Print an error
message

No

B

Run the User Input Number
subroutine to input a valid integer

for the passenger ID field

No

Does the user’s
input equal 5?

Run the search subroutine to search for a
node with the same value as the user’s

inputted number in the seat number field
Yes

Does the user’s input match the
seat number field of a passenger

node in the list?
Yes

Print an error
message

No

B

Run the User Input Number
subroutine to input a valid integer

for the seat number field

No

Does the user’s
input equal 0?

Yes

No

A No

EndB

Set target found to
true

Set target found to
true

Set target found to
true

C

C

C

Clear input buffer

C

To Page 3

E

From
Page 2

Print a menu for the user to update from

Run the User Input Number
subroutine to accept a valid integer

for choosing an update option

Does the user’s
input equal 1?

Print the current
telephone number

Run the User Input Number
subroutine to input a valid integer

for the phone number field
Yes

Does the user’s
input equal 2?

Print the current
reservation number

Run the User Input Number
subroutine to input a valid integer
for the reservation number field

Yes

Does the user’s
input equal 3?

Print the current
passenger ID

Run the User Input Number
subroutine to input a valid integer

for the passenger ID field
Yes

No

No

Does the user’s
input equal 4?

No

Print the current
seat numberYes

Run the User Input Number
subroutine to input a valid integer

for the seat number field

Update the telephone number
field with the new valueE

Update the reservation number
field with the new valueE

Update the passenger ID field
with the new valueE

Run the get seat available subroutine to
determine if the user inputted number is

a valid unused seat number

Was the user inputted number
determined to be a valid unused seat

number?

Update the seat number field
with the new value Yes

Print an error
message

No

D

EDoes the user’s
input equal 0?

No

D

D No

E

Yes

Delete Passenger
Refers to the delete_node() function

This functionality will remove a user
defined passenger node from the list.

It will search (with the search
subroutine) for a node based on a user
inputted last name and delete the first
node that it finds with that last name

Start

Declarations:

Node* pre = head; //will be pointed to the node before the node that will be deleted so that node can
//point to the next node in the list

Node* temp = head; //will be pointed to the node that will be deleted

std::string captureString; //holds the user inputted value for a last name

Is the list empty?Print an error
message Yes

Accept a user
input for a
last name

No

Run the search subroutine to search for a node with the same
value as the user’s inputted string in the Last Name field

Does the user’s input match the
last name field of a passenger

node in the list?

Is the node to be deleted
located at the front of the list?

Yes

Point the head
pointer to the next

node in the list

Yes

set the pre pointer
to point to the node
after the node to be

deleted

No

Delete the node to
be deleted

Print an error
message No

Print a confirmation
messageOutput true

Output False

End

Check In Passenger
Refers to the CheckInPassenger() function

This function will search for a passenger
with a user inputted last name (using the
search subroutine) and will check in the first
passenger it finds with that last name.

It does this by switching the bool Check in
value located in each node to true

Start

Declarations:

Node* nullityNode = NULL; //used for the search function parameter requirements
Node* temp = head; //used to start the search at the beginning of the list
std::string captureString; //holds the user inputted last name

Is the list empty?Print an error
message Yes

Accept a user
inputted last

name

Run the search subroutine to search for a node with the same
value as the user’s inputted string in the Last Name field

Does the user’s input match the
last name field of a passenger

node in the list?

Change the
CheckedIn field of
the found node to

read true

Print a
confirmation

message

Yes

Print an error
message No

End

Print Check In Report

Refers to the Print_CheckIn_List() function

This subroutine prints a list of all passenger
names and whether or not they are
checked in. It will also list the total number
of passengers checked in and the total
number of passengers not checked in.

Start

Declarations:

int CheckedInCnt = 0; //counts the number of passengers checked in
int NotCheckedInCnt = 0; //counts the number of passengers not checked in
Node* temp = head; //starts at the beginning of the list

Does temp point
to NULL?

Print the first name field and
last name field held in the
passenger node currently

pointed to by temp

Is the passenger
currently pointed to by

temp checked in?

No

Print a message
saying that the

passenger is not
checked in

No

Increment the
notCheckedInCnt
variable by one

Print a message
saying that the

passenger is
checked in

Increment the
CheckedInCnt

variable by one

Yes

Point temp to the next
passenger node in the list.

(to null if already at the
last node)

Print the number of checked in
and not checked in passengers

using the counters
YesEnd

Print Menu Report

Refers to the Print_Meal_List() function

This subroutine will print a list
containing all passenger names and
their meal choices. It will also print the
total amount of each choice chosen

Start

Declarations:

Node* temp = head //so the report starts at the beginning of the list

//These variables hold the total amount of each meal choice chosen
int meal1Cnt = 0
int meal2Cnt = 0
int meal3Cnt = 0
int meal4Cnt = 0
int meal5Cnt = 0

Does temp point
to NULL?

Print the first name field and
last name field held in the
passenger node currently

pointed to by temp

No

Is the meal choice string contained in the node
pointed to by temp equal to choice 1?

Increment the
meal1cnt variable by 1 Yes

Is the meal choice string contained in the node
pointed to by temp equal to choice 2?

Increment the
meal2cnt variable by 1 Yes

No

Is the meal choice string contained in the node
pointed to by temp equal to choice 3?

Increment the
meal3cnt variable by 1 Yes

Is the meal choice string contained in the node
pointed to by temp equal to choice 4?

Increment the
meal4cnt variable by 1 Yes

No

No

Is the meal choice string contained in the node
pointed to by temp equal to choice 5?

Increment the
meal5cnt variable by 1 Yes

No

A

No

A

A

A

A

A

Point temp to the next
passenger node in the list.

(to null if already at the
last node)

A

Print the amount of each meal
chosen based on the counters YesEnd

Sort

Refers to the Sort() function

 This function will put a passenger list in alphabetical
order by last name

 It does this by first checking each node against the first
node. if a node that comes alphabetically before the first
node is found, the function places that node just before
the first node. Then the process begins again with the
new first node. When no nodes are found that come
alphabetically before the first node, the node that other
nodes are compared to is moved to the second node, and
so on until the node other nodes are compared to is the
last node in the list.

Start

Declarations:

Node* current = head; //this pointer contains the node being challenged
Node* challenger = head; //this pointer contains the node challenging the

 //current pointer for alphabetically first position

Node* pre = head; //this pointer is used to place the challenger node
//before the current node

Node* challengePre = head; //this pointer is used to remove the

//challenger pointer from its old spot

bool swap = false; //this variable is used to indicate that a swap was made
//not shown in this flowchart for clarity

std::string currentName; //holds the current node's last name

std::string challengerName; //holds the challenger node's last name

Does current
point to NULL

Does the next variable in the node
pointed to by challenger point to NULL

No

Point challengePre to the
node pointed to by

challenger

Point challenger to the node pointed to
by the next pointer variable in challenge.

(i.e. challenger = challenger->next)

No

Run the Alphabetize subroutine,
compare the last name in the node

pointed to in by challenger to the last
name in the node pointed to by current

To Page 2

B

A

Is the list empty?

No

Print error
message Yes

Set pre to point to
the node pointed to

by current

Set current to point
to the node pointed

to by the next
variable in current

Set challenger to
point to the node

pointed to by
current

Yes

B

End

Yes

Does the node pointed to by
challenger come alphabetically first?

set the next variable in node
pointed to by challenger pre to

point to the node after the node
pointed to by challenger

Is the node pointed to by current
at the beginning of the list?Yes

Set the next variable in the node
pointed to by challenger to point
to the node pointed to by current

Set head to point to
the node pointed to

by challenger

Yes

Set the next variable in the node
pointed to by pre to point to the

node pointed to by challenger

Set the next variable in the node
pointed to by challenger to point
to the node pointed to by current

No

Set current to point
to the node pointed

to by challenger

B

A

No

Alphabetize
Refers to the Alphabetize() function

This function will decide which of two strings given as parameters
comes alphabetically first.

It does this by converting all letters to lowercase and then
comparing the ANSII values of each letter to each other. The letter
with the lowest value comes first

It outputs true if the challenger string comes alphabetically before
the current string and outputs false if otherwise

This subroutine is only used in the sort functionality

Start

Parameters:

Str current // this parameter holds the string the challenger
//string is compared to

Str challenger //this parameter holds the string that is compared to
 //the current string

Is the current string shorter or
equal to the challenger string?

Declare int i=0 // this variable is used
to iterate through the entire string

Is i less than the length of the
current string?

Yes

Return false

Convert the characters being analyzed
in the current and challenger strings to

lowercase letters.

Yes

Is the ANSII value of the character being analyzed in the current string less than
the ANSII value of the character being analyzed in the challenger string?

Is the ANSII value of the character being analyzed in the current string greater
than the ANSII value of the character being analyzed in the challenger string?

No

Return true

Return false Yes

Yes

Increment the i
variable by one

No

To Page 2

No

A

A

A

A

End

Str challenger //this parameter holds the string that is compared to

Declare int i=0 // this variable is used
to iterate through the entire string

Is i less than the length of the
challenger string?Return true

Convert the characters being analyzed
in the current and challenger strings to

lowercase letters.

Yes

Is the ANSII value of the character being analyzed in the current string less than
the ANSII value of the character being analyzed in the challenger string?

Is the ANSII value of the character being analyzed in the current string greater
than the ANSII value of the character being analyzed in the challenger string?

No

Return true

Return false Yes

Yes

Increment the i
variable by one

No

From
Page 1

A

A

A

